Symptoms based endometriosis prediction using machine learning
نویسندگان
چکیده
Endometriosis a painful disorder that stripes the uterus both inside and outside. can be diagnosed by medical practitioners with help of traditional scanning procedures. Laparoscopic surgery is authentic method for identifying advanced stages endometriosis. The statistical approach state-of-art various endometriosis using laparoscopic images. paper focuses on well-known known as chi-square correlation coefficients are implemented symptoms correlated Chi-square analysis performs association between With these analysis, an algorithm was proposed prediction factor (EPF). EPF predicts presence if derived value greater than 1. From it identified mild influenced 34% menstrual flow, minimal 40% dysmenorrhea, where moderate 31% tenderness deep infiltrating 22% adnexal mass.
منابع مشابه
Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملGeoreferencing Semi-Structured Place-Based Web Resources Using Machine Learning
In recent years, the shared content on the web has had significant growth. A great part of these information are publicly available in the form of semi-strunctured data. Moreover, a significant amount of these information are related to place. Such types of information refer to a location on the earth, however, they do not contain any explicit coordinates. In this research, we tried to georefer...
متن کاملthermal conductivity of water-based nanofluids: prediction and comparison of models using machine learning
statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. this paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. the thermal conductivity of nanofluids increases with the volume fraction and temperature. machine learni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of Electrical Engineering and Informatics
سال: 2021
ISSN: ['2302-9285']
DOI: https://doi.org/10.11591/eei.v10i6.3254